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Most researchers in the social and behavioral

sciences will probably have heard of Bayesian

statistics in which probability is defined

differently compared to classical statistics

(probability as the long-run frequency versus

probability as the subjective experience of

uncertainty). At the same time, many may be

unsure of whether they should or would like to

use Bayesian methods to answer their research

questions (note: all types of conventional

questions can also be addressed with Bayesian

statistics) . As an attempt to track how popular

the methods are, we searched all papers

published in 2013 in the field of Psychology

(source: Scopus), and we identified 79 empirical

papers that used Bayesian methods (see e.g.

Dalley, Pollet, & Vidal, 2013; Fife, Weaver, Cool,

& Stump, 2013; Ng, Ntoumanis, Thøgersen-

Ntoumani, Stott, & Hindle, 2013). Although this

is less than 0.5% of the total number of papers

published in this particular field, the fact that

ten years ago this number was only 42 indicates

that Bayesian methods are slowly beginning to

creep into the social and behavioral sciences.

The current paper aims to get you started

working with Bayesian statistics. We provide: (1)

a brief introduction to Bayesian statistics, (2)

arguments as to why one might use Bayesian

statistics, (3) a reading guide used to start

learning more about Bayesian analyses, and,

finally (4) guidelines on how to report Bayesian

results. For definitions of key words used in this

paper, please refer to Table 1.

Bayesian Statistics: A

brief introduction

Before providing arguments

why one would use Bayesian

statistics, we first provide a

brief introduction. Within

conventional statistical techniques, the null

hypothesis is always set up to assume no

relation between the variables of interest. This

null hypothesis makes sense when you have

absolutely no idea of the relationship between

the variables. However, it is often the case that

researchers do have a priori knowledge about

likely relationships between variables, which

may be based on earlier research. With Bayesian

methods, we use this background knowledge

(encompassed in what is called a ‘prior’) to aid

in the estimation of the model. Within Bayesian

statistics, we can learn from our data and

incorporate new knowledge into future

investigations. We do not rely on the notion of

repeating an event (or experiment) infinitely as

in the conventional (i.e. , frequentist)

framework. Instead, we incorporate prior

knowledge and personal judgment into the

process to aid in the estimation of parameters.

Thus, the key difference between Bayesian

statistics and conventional (e.g., maximum

likelihood) statistics concerns the nature of the

unknown parameters in a statistical model. The

unknown model parameters are those that are

freely estimated. For example, when estimating

a regression model with one dependent outcome

variable (Y) and two predictors (X1 and X2), see

Figure 1, the unknown parameters are: one
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intercept (α) , two regression coefficients (β1,
β2) , and the residual variance of the dependent

variable (ε) . With conventional statistics it is

assumed that in the population there is only

one true population parameter, for example, one

true regression coefficient that is fixed but

unknown. In the Bayesian view of probability,

all unknown parameters can incorporate

(un)certainty that can be defined by a

probability distribution. Thus, Bayesian methods

do not provide one outcome value but rather an

interval (‘distribution’) with a probability that

this interval contains the regression coefficient.

That is, each parameter is believed to have a

distribution that captures (un)certainty about

that parameter value. This (un)certainty is

captured by a distribution that is defined before

observing the data and is called the prior

distribution (or prior) . Next, the observed

evidence is expressed in terms of the likelihood

function of the data. The data likelihood is then

used to weigh the prior and this product yields

the posterior distribution, which is a compromise

of the prior distribution and the likelihood

function. These three ingredients constitute the

famous Bayes’ theorem.

The three ingredients underlying Bayesian

statistics are summarized in Figure 2 for one of

the regression coefficients (β) pulled from Figure

1. The first ingredient of Bayesian statistics is

knowledge about this parameter before

observing the data, as is captured in the prior

distribution. Often this knowledge stems from

systematic reviews, meta-analyses or previous

studies on similar data (see O’Hagan et al. ,

2006). In Figure 2 five different priors are

displayed for β. The variance, or precision

(inverse of the variance), of the prior

distribution reflects one’s level of (un)certainty

about the value of the parameter of interest: the

smaller the prior variance, the more certain one

is about the parameter value. There are three

main classes of priors that differ in the amount

of certainty they carry about the population

parameter. These different priors are called: (1)

non-informative priors, (2) informative priors,

and (3) weakly-informative priors. Non-

informative priors are used to reflect a great

Figure 1 . Regression model with the unknown parameters.
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deal of uncertainty in what the population

parameter looks like. Weakly-informative priors

incorporate some information into the model

and reflect more certainty about the population

parameter compared to a non-informative prior.

This prior contains some useful information, but

it does not typically have much influence on the

final parameter estimate. Finally, the prior that

contains the most amount of certainty about the

population parameter is an informative prior.

Informative priors contain strict numerical

information that is crucial to the estimation of

the model and can have a large impact on final

estimates. These three levels of informativeness

are created by modifying the parameters of the

prior, called hyperparameters. Specifically, the

hyperparameters for these priors (e.g., the prior

mean and prior variance) are fixed to express

specific information and levels of (un)certainty

about the model parameters being estimated.

The second ingredient is the information in

the data itself. It is the observed evidence

expressed in terms of the likelihood function of

the data (βML) . Thirdly, both prior and data are

combined via Bayes’ theorem. The posterior

distribution reflects one’s updated knowledge,

balancing background knowledge (the prior)

with observed data (the likelihood). With a non

or weakly informative prior, the posterior

estimate may not be influenced by the choice of

the prior much at all, see Figure 2A, 2B and 2C.

With informative (or subjective) priors, the

posterior results will have a smaller variance, see

Figure 2C. If the prior disagrees with the

information in the data, the posterior will be a

compromise between the two, see Figure 2E, and

then one has truly learned something new about

the data or the theory.

Why would one use Bayesian

Statistics?

There are four main reasons as to why one

might choose to use Bayesian statistics: (1)

complex models can sometimes not be estimated

using conventional methods, (2) one might

prefer the definition of probability, (3)

background knowledge can be incorporated into

the analyses, and (4) the method does not

depend on large samples.

First, some complex models simply cannot be

estimated using conventional statistics. In these

cases of rather complex models, numerical

integration is often required to compute

estimates based on maximum likelihood

estimation, and this method is intractable due

to the high dimensional integration needed to

estimate the maximum likelihood. For example,

conventional estimation is not available for

many multilevel latent variable models,

including those with random effect factor

loadings, random slopes when observed variables

are categorical, and three-level latent variable

models that have categorical variables. As a

result, alternative estimation tools are needed.

Bayesian estimation can also handle some

commonly encountered problems in orthodox

statistics. For example, obtaining impossible

parameters estimates, aiding in model

identification (Kim, Suh, Kim, Albanese, &

Langer, 2013), producing more accurate

parameter estimates (Depaoli, 2013), and aiding

in situations where only small sample sizes are

available (Zhang, Hamagami, Wang, Grimm, &

Nesselroade, 2007).

Second, many scholars prefer Bayesian

statistics because of the different definition of

probability. Consider for example the

interpretation of confidence intervals (CIs) . The

frequentist CI is based on the assumption of a

very large number of repeated samples from the

Bayesian analyses
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population. For any given data set, a regression

coefficient can be computed. The correct

frequentist interpretation for a 95% CI is that 95

out of 100 replications of exactly the same

experiment capture the fixed but unknown

regression coefficient. Often this 95% CI is

misinterpreted as meaning there is a 95%

probability that the regression coefficient

resides between the upper and lower limit,

which is actually the Bayesian interpretation.

Thus, Bayesian confidence intervals may be more

intuitively appealing.

Third, as described above, with Bayesian

statistics one can incorporate (un)certainty

about a parameter and update this knowledge.

Let background knowledge be the current state

of affairs about a specific theoretical model,

which can be operationalized by means of a

statistical model, see for example Figure 1.

Everything that is already known about the

parameters in the model based on, for example,

previous publications, can be used to specify

informative priors, see Figure 2. When the priors

are updated with current data, something can

be learned, especially if the priors (i.e. , current

state of affairs) disagree with the current data.

Let us explain this conflict between the prior

and the current data using a simplified example

where two groups were generated (M1=0,

M2=0.45, SD=2; n=100) using an exact data set.

Obviously, when no prior knowledge is specified

(using non-informative prior distributions),

there is no difference between the population

difference (ΔMpopulation = 0.45) and the estimated

difference obtained with the Bayesian analysis

(ΔMposterior = 0.45). Next, we specified

informative priors that were inaccurate to the

population; that is, for M1 we specified a prior

mean of .50 and for M2 we specified a prior

mean of .05. We varied the precision of the prior

distribution to obtain weakly informative (low

precision) and highly informative priors (high

precision). The relation between the precision

and the prior-data conflict (i.e. , the difference

between ΔMpopulation and ΔMposterior) is shown in

Figure 3. In conclusion, the higher the

precision, the more influence the prior

specification has on the posterior results. If

there is a large prior-data conflict, apparently

the current state of affairs about the statistical

model does not match with the current data.

This is what a Bayesian would call: fun! Because

Figure 3. The relation between precision and bias.
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now, finally, something new has been discovered

and one should discuss in the paper how it could

be that there is a prior-data conflict. Is it the

theory that needs to be adjusted? Or, was the

data not a random sample from the population?

Or does the theory not hold for the specific

population used for the current study? All of

these questions are related to updating

knowledge.

Fourth, Bayesian statistics is not based on

large samples (i.e. , the central limit theorem)

and hence large samples are not required to

make the math work. Many papers have shown

the benefits of Bayesian statistics in the context

of small data set (e.g., Zhang et al. , 2007).To

illustrate the decrease in required sample size

we performed a small simulation study. Multiple

exact data sets with two groups, see above, were

generated with the goal to obtain for every data

set the same p-value for a t-test. With n = 100

the t-test produced a just significant effect of p

= .045. Also, when using objective Bayesian

statistics with an infinitive low prior precision

(non-informative prior) the Bayesian p-value

was .045. Next, we specified weakly and highly

informative priors with a prior mean equal to

the population values (data based prior), but we

varied the precision. The relation between the

precision and the required sample size to obtain

the same significant effect of p = .045 is shown

in Figure 4 showing that the higher the

precision, the smaller the sample size needed to

obtain the same effect. In conclusion, the more

precision a researcher is willing to specify before

seeing the data, the smaller the sample size

needed to obtain the same effect compared to

an analysis without specifying any prior

knowledge.

Where to start?

Of course, the introduction offered in the

current paper is not enough to start working

with Bayesian statistics, therefore we provide a

step-by-step reading guide as well as resources

for statistical programs that can implement

Figure 4. The relation between precision and the possible gain in sample size.
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1 When using exact data sets the data characteristics are
exactly the same as the population statistics. For example,
if the population mean is specified as being zero with a
standard deviation of 2, the data set generated from this
population also has exactly a mean of zero and a SD of 2.
The software BIEMS (Mulder, Hoijtink, & de Leeuw, 2012)
was used for generating such an exact data. The t-tests
for mean differences were performed in the software
Mplus.
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Bayesian methods. For a gentle introduction to

Bayesian estimation, we recommend the

following: Kaplan and Depaoli (2013); Kruschke

(2011); and van de Schoot et al. (2013). For a

more advanced treatment of the topic, readers

can be referred to a variety of sources, which

include Gelman, Carlin, Stern, and Rubin (2004).

There are many different software programs

that can be used to implement Bayesian method

in a variety of contexts and we list the major

programs here. Various packages in the R

programming environment (e.g., Albert, 2009)

implement Bayesian estimation, with the

number of Bayesian packages steadily

increasing. Likewise, AMOS (Arbuckle, 2006),

BUGS (Ntzoufras, 2009), and Mplus (Muthén,

2010) can be used for estimating Bayesian latent

variable models, which can also include

multilevel or mixture extensions. BIEMS

(Bayesian inequality and equality constrained

model selection; Mulder, Hoijtink, & de Leeuw,

2012) is a Bayesian program for multivariate

statistics and Bayesian hypothesis testing.

Standard statistical models estimated through

the SAS software program can now be used for

Bayesian methods. Finally, SPSS incorporates

Bayesian methods for imputing missing data.

What to include in an empirical

Bayesian paper?

There are several key components that must

be included in the write-up of an empirical

paper implementing Bayesian estimation

methods. The statistical program used for

analysis is an important detail to include since

different methods (called sampling methods) are

implemented in different Bayesian programs and

these methods may lead to slightly different

results. A discussion of the priors needs to be in

place. The researcher should thoroughly detail

and justify all prior distributions that were

implemented in the model, even if default priors

were used from a software program. It is

important to always provide these details so that

results can be replicated, a full understanding of

the impact of the prior can be obtained, and

future researchers can draw from (and

potentially update) the priors implemented. A

discussion of chain convergence must be

included. Each model parameter estimated

should be monitored to ensure that convergence

was established for the posterior. A variety of

statistical tools can be used to help monitor and

evaluate chain convergence (see, Sinharay,

2004), and visual inspection of convergence

plots can also aid in detecting non-convergence.

Finally, researchers might also find it beneficial

to run a sensitivity analysis using different

forms and levels of informativeness for the

priors implemented. Although we do not

recommend using this as a means for updating

the prior on the same data set (i.e. , the original

prior should still be used in the final write-up),

the sensitivity analysis can help provide insight

into the impact of the prior and this impact can

be discussed further in the paper.

Conclusion

In our experience, we have found Bayesian

methods to be incredibly useful for solving

estimation problems, handling smaller sample

sizes with greater accuracy, and incorporating

prior judgment or knowledge into the estimation

process. It is our aim that this paper will serve

as a starting point for those interested in

implementing Bayesian methods.
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